Provide Strate Provide Strate Instruction Provide S	Perform upper each status Particle hypothesis Init (Hs) - hypothesis & ha difference research Hypothesis & ha difference research Hypothesis & ha difference research Hypothesis & ha difference interval			- LL- OCIO	Toching	
Sees of injectness testing ()estate superinst testing invalided to be a see of the second	See by the hypothesis (Stand) (See the probability of gesting sample mean (accurate probability of gesting sample mean (accurate probability of gesting sample mean)(accurate probability of gesting sample to population le.g. Hor M. = M.) : can compare sample to population le.g. Hor M. = M.) : can compare sample to population le.g. Hor M. = M.) : can compare sample to population le.g. Hor M. = M.) : can compare sample to population le.g. Hor M. = M.) : can compare sample to population le.g. Hor M. = M.) : can compare sample to population le.g. Hor M. = M.) : can compare sample to population le.g. Hor M. = M.) : can compare sample to population le.g. Hor M. = M.) : can compare sample to population le.g. Hor M. = M.) : can compare sample to population le.g. Hor M. = M.) : can compare sample to population le.g. Hor M. = M.) : can compare sample to population le.g. Hor M. = M.) : can compare sample to population le.g. Hor M. = M. = M.) : definition of the different from expected = Preject Ho : for ding null, We to reject? : huppethesis doesn't prove anything : failing Hor M. = Stating to Implement to reject could be due to a Varitety Op factors when p V. Stude is Usually .05 (pr.05) : when p Value is greater than .05 - sufficiently unlikely and we reject the null : we want a p value less than .05 - sufficiently unlikely and we reject the null : we want a p value less than .05 - sufficiently unlikely and we reject the null : when p Value is greater than .05 - sufficiently unlikely and we reject the null : we from		пур	neuesis	IESTING-	
)Note the type the set of the se	jease wysothesis multina)-hysothesis (Ha) (carculate probability on getting sample mean joecide unvertient to research hypothesis (Ha) (carculate probability on getting sample mean joecide unvertient to research holpothesis interialm the (p>05) dimake general conclusion hul hupothesis scates that there is no difference btUm our statistic and what we would find by chance .can compare sample to population (e.g. Ho·A, =A) why use null .can compare two samples (e.g. Ho·A, =A) when resist doesn't prove anything .failure to reject could be due to a variety 0g factors when p value is usaily .of (p.c.os) .butter is rest find or use a less than 51- chance that the difference we see is .sampling error when p value is less than .of -sufficiently unlikely and we reject the null .ube want a p value (ess than .of -sufficiently unlikely and we reject the null .ube want a p value (ess than .of -sufficiently unlikely and we reject the null .ube want a p value (ess than .of -sufficiently unlikely and we reject the null .ube want a p value (ess than .of -sufficiently unlikely and we reject the null .ube want a p value (ess than .of -sufficiently unlikely and we reject the null .ube want a p value (ess than .of -sufficiently unlikely and we reject the null .ube want a p value (ess than .of -sufficiently unlikely and we reject the null .ube th	steps for hypothesis t	esting			
null(Ha)-hupothesis (# no difference research hupothesis (Ha) I/calculate probability 0b genting sample mean s)decide unether to -reject He (pc,os) :reter the (pc,os) :reter to :make general conclusion NUI hupothesis States that where is no difference betwn our statistic and what we would find by chance .can compare sample to poweration (Leg. Hor A, = A/) .can compare two samples (e.g. Hor A, = A/) .can compare two samples (e.g. Hor A, = A/) .can compare two samples to poweration (Leg. Hor A, = A/) .can compare two samples (e.g. Hor A, = A/) .can compare two samples (e.g. Hor A, = A/) .can compare two samples (e.g. Hor A, = A/) .can compare two samples (e.g. Hor A, = A/) .can compare two samples (e.g. Hor A, = A/) .can compare two samples (e.g. Hor A, = A/) .can compare two samples (e.g. Hor A, = A/) .can compare two samples (e.g. Hor A, = A/) .can compare two samples (e.g. Hor A, = A/) .can compare two samples (e.g. Hor A, = A/) .can compare two samples (e.g. Hor A, = A/) .can compare two samples (e.g. Hor A, = A/) .can compare two sampling due to sampling distribution .can comp	$\begin{array}{c} \operatorname{null(Hs)-hypothesis (Fin) difference} \\ \operatorname{research hypothesis (Ha)} \\ \operatorname{lcalculate probability of getting sample mean} \\ \operatorname{lcalculate probability of getting sample to population leg. Hor M, = M. \\ \operatorname{lcalculate probability of getting to be true, but can prove something to be faise (theoretical by starting w) null, we can prove something to be faise (theoretical by starting w) null, we can prove something distribution \\ \operatorname{cannobreotesing to be true, but can prove something to be faise (theoretical by starting w) null, we can prove something distribution \\ \operatorname{cannobreotesing to reject.} \\ \operatorname{cannobreotesing to reject?} \\ \operatorname{hupothesis doesn't prove anything \\ \operatorname{calicate to reject could be due to a variety of factors \\ when retaining null, you aren't actually saying two groups are equal \\ \operatorname{ionificance telle} \\ \operatorname{when p Value is usually -o5 (pc.os) \\ \ when p Value is usually -o5 sufficiently unlikely \\ \operatorname{this value is usually -o5 sufficiently unlikely and we reject the null \\ \operatorname{when p Value is greater enan -o5 - sufficiently unlikely and we reject the null \\ \operatorname{when p Value is greater enan -o5 - sufficiently unlikely and we reject the null \\ \operatorname{when p Value is greater enan -o5 - sufficiently unlikely and we reject the null \\ \operatorname{when p Value is greater enan -o5 - sufficiently unlikely and we reject the null \\ \operatorname{when p Value is greater enan -o5 - sufficiently unlikely and we reject the null \\ \operatorname{when p Value is greater enan -o5 - sufficiently unlikely and we reject the null \\ \operatorname{when p Value is greater enan -o5 - sufficiently unlikely and we reject the null \\ \operatorname{when p Value is greater enan -o5 - sufficiently unlikely and we reject the null \\ \operatorname{we true tind offf} He faise (diff) \\ getter or reset failing to reject$	l)state hypothesis				
research hypothesis (Ha) (calculate probability 05 genting, sample mean bicalculate probability 05 genting, sample mean probability 05 genting, sample mean retain the (p2.05) imake general conclusion hull hypothesis states that where is no difference betwn our statistic and what we would find by chance is an compare sample to population (e.g., Hor.M.,=M.) is an compare sample to population (e.g., Hor.M.,=M.) is an compare two samples (e.g., Hor.M.,=M.) is an compare two samples (e.g., Hor.M.,=M.) is an compare two samples (e.g., Hor.M.,=M.) is an are very different from expected =>neve sampling to be faise (theoretical is data are very different from expected =>neve sampling to be faise (theoretical is data are very different =>holl to never anything if data isn't different =>holl to a variety 0; factors when retaining null, you aren't actually saying two groups are equal isonificance tebel when p 2.05, we have a less than 51 chance that the difference we see (s sampling error when p value is less than .05 -sufficiently unlikely and we reject the null when p value is less than .05 -sufficiently unlikely and we reject the null when p value is greater than .05 -likely retain the null hypothesis (s indicates difference is small/due to sampling error type one error: rejecting null when hit is true indicates difference is small/due to sampling error iff p=a p=i-B iff) iff) p=a p=i-B iff) iff) p=i-a p=i-B iff) iff) p=i-a p=i-B	research hypothesis (Ha) (calculate probability of getting sample mean placticle unether to replact Ho (p2.05) iretain No (p2.05) (make general conclusion NUI hypothesis States that there is no difference btWn our statistic and what we would find by chanc .can compare sample to population (E.g. Hor A., = A.) .can compare two samples (£.g., Hor A., = A.) .why use null .can compare two samples (£.g., Hor A., = A.) .why use null .can compare two samples (£.g., Hor A., = A.) .why use null .can compare two samples (£.g., Hor A., = A.) .why use null .can compare two samples (£.g., Hor A., = A.) .why use null .can compare two samples (£.g., Hor A., = A.) .why use null .can compare two samples (£.g., Hor A., = A.) .why do We say "failt to reject? .hypothesis doesn't prove anything .fiddata isn't different from expected =>reject Ho if data are very different from expected =>reject Ho if data isn't different from expected =>reject Ho if data isn't different from expected =>reject Ho if data isn't different from expected =>reject NUL .when p to low essist doesn't prove anything .hypothesis doesn't prove anything .this value is usually .os (p.c.os) .when p value is tess than .oS -sufficiently unlikely and we reject the null .we want a p value less than .oS .indicates difference is large and meaningful When p value is greater than .oS .indicates difference is small/due to sampling error type one error: rejecting null when it is true .finding an effect when there isrit one .tupe two error: falling to reject null when null is false .not finding an effect that is there .finding an effect when there isrit one .tupe is the error .p=1-B .indicates difference is arege and meaningful .indicates	·nuil(Ho)-hypothe	isis of no differen	nce		
<pre>l/catculate probability 0% getting sample mean)decide unether to)reject H & (p.2.05) (typese protection of the the top of the</pre>	(calculate probability ds getting sample mean)decide unether to)decide unether to)reject Hs (p2.05) :retain Hs (p2.05) :retain Hs (p2.05) :retain Hs (p2.05) :retain Hs (p2.05) :retain Hs (p2.05) :can compare sample to population (e.g. Hor AL = AL) :can compare fue Samples (e.g. Hor AL = AL) :can compare fue Samething to be true, but can prove Something to be faise (theoretical :by starting wi null, we can put together sampling distribution Status is (faither ent from expected ->reject Hs if data isn't different expected ->reject Hs if data isn't different expected ->reject Hs if data isn't different expected ->reject Hs why do use say "fail to reject? -hupothesis (desin't prove anything -failure to reject could be due to a 'variety (f) factors when retaining null, you aren't actually saying two groups are equal ignificance to reject could be also than 51 chance that the difference we see is sampling error when p value is usually .o5 (p2.05) -yubith a p value is usually .o5 (p2.05) -yubith a p value is uses than .05 - sufficientity unlikely and we reject the null .we set a invit on ubat value is experime.5- inkey retain the null hypothesis (.indicates difference is isres han .05 - sufficientity unlikely and we reject the null .upe ubat a prove lass than .05 - sufficientity unlikely and we reject the null .upe ubat a prove lass than .05 - sufficientity unlikely and we reject the null .upe ubat arror .failing to reject null when it is true .indicates difference is ismall/due to sampling error .indic	research hypoth	iesis (Ha)			
blackide unether to reject Ho (p∠os) retain Ho (p≥o5) instain Ho (p≥o5) instain Ho (p≥o5) instain Ho (p≥o5) instain Ho (p≥o5) instain Ho (p≥o5) istating Wind How Sample's (CG, Hor M, = M) can compare two Sample's (CG, Hor M, = M) istating Winull, we can put together sampling distribution istating Winull, we can put together sampling distribution is data are very different from expected ->reject Ho if data isn't difference is any any solution when the say "fail to reject: when p value is less than .05 -sufficientity unlikely this value is usally iss than .05 -sufficientity unlikely when p value is less than .05 -sufficientity unlikely when p value is less than .05 -sufficientity unlikely and we reject the null when p value is greater than .05 -likely retain the nul hypothesis; indicates that difference is large and meaningful When p value is greater than .05 -likely retain the nul hypothesis; indicates difference is large and meaningful when p value is greater than .05 -likely retain the null hypothesis; indicates difference is arge and meaningful when p value is greater than is there is null mean there isn't one type one error reject that is there is null performed if the faise (diff) is p=1 - A p=1 - B is null correct to type two error is p=1 - A p=1 - B	Ndecide unether to reject He [p_2.05] retain He [p>.05] interval He	ljcalculate probability	or getting same	ple mean		
· reject Hs (p2.05) · retain Hs (p2.	$\begin{array}{c} \text{replect He (p_{2}, b_{5}) \\ \text{instee general conclusion} \\ \hline \text{NUL hypothesis} \\ \text{States that where is no difference betwn our statistic and what we would find by chank can compare sample to population (e.g., Hor M, = M-) \\ \hline \text{-can compare sample to population (e.g., Hor M, = M-) } \\ \hline \text{-can compare sample to population (e.g., Hor M, = M-) } \\ \hline \text{-can compare two Samples (e.g., Hor M, = M-) } \\ \hline \text{-can compare two Samples (e.g., Hor M, = M-) } \\ \hline -can not prevel something to be true, but can prove something to be faise (theoretical by starting w) null, we can put together sampling distribution (together -) > sampling distribution (together -) > sampling distribution (together -) > sampling distribution (together to reject: -) + nupothesis (tereain) why do we say "fail to reject? + null hypothesis (tretain) why do we say "fail to reject? + do (together to reject could be due to a 'variety (together to reject could be due to a 'variety (together to reject) + do (together together togeth$	b)decide whether to				
$\begin{array}{c} \label{eq:retain He} (p_2 b5) \\ \label{eq:retain He} (p$	$\begin{array}{c} \text{retrain He}(p>05) \\ \text{imake general conclusion} \\ imake$	·reject Ho (pc.05				
the make general conclusion hull hypothesis States that shere is no difference betwin our statistic and what we would find by chance (can compare samples (cg, Hp~M,=M,) why we null 'cannot prove samething to be true, but can prove something to be false (theoretical by starting wi null, we can put together sampling distribution torstical conclusion torstical minis on what values or sufficiently unlikely torstical torstical state torstical state difference is large and meaningful torstical state difference is large and meaningful torstical state difference is large and meaningful torstical state torstical 	the make general conclusion hull huppeness States that shere is no difference betwn our statistic and what we would find by chank (can compare two samples (0, Hor M, = M) (can hor two hor Hor M, Hor Hor M, H	·retain Ho (p>.05	5)			
Null hypothesis States that where is no difference betwn our statistic and what we would find by chance .can compare sample to population [e.g., Ho-M.,=M.) .can compare two samples (e.g., Ho-M.,=M.) .wing use null .can compare samples (e.g., Ho-M.,=M.) wing use null .can compare two samples (e.g., Ho-M.,=M.) .wing use null .can compare two samples (e.g., Ho-M.,=M.) .wing use null .can compare two samples (e.g., Ho-M.,=M.) .wing use null .can compare two samples (e.g., Ho-M.,=M.) .wing use null .can compare two samples (e.g., Ho-M.,=M.) .wing use null .can compare two samples (e.g., Ho-M.,=M.) .wing use samples (e.g., Hor M.,=M.) .wing use samples (e.g., Hor M.,=M.) .wing use samples a less than .os and the sampling two groups are equal sampling error .when p value is uses than .os - sufficienting unlikely and we reject the null	Null hypothesis States that where is no difference betwn our statistic and what we would find by chance (an compare sample to population le.g. Ho $M_1 = M_2$) • can compare two samples (£9, Ho $M_1 = M_2$) wny use null • can compare two samples (£9, Ho $M_1 = M_2$) wny use null • can compare two samples (£9, Ho $M_1 = M_2$) wny use null • can compare two samples (£9, Ho $M_1 = M_2$) wny use null • can compare two samples (£9, Ho $M_1 = M_2$) wny use null • can compare two samples (£9, Ho $M_1 = M_2$) wny use null • can compare two samples (£9, Ho $M_1 = M_2$) wny use null • can compare two samples (£9, Ho $M_1 = M_2$) • was samples to powersaich troue any thing • fidata isn't different from expected \rightarrow reject Ho if data isn't different M_2 reject null hypothesis (besoft troue any thing • fidilure to reject could be due to a variety 0p factors When retaining null, you aren't actually Saying two groups are equal significance level ignificance level we set a limit on what values or sufficiently unlikely • this value is usually .05 (pc.os) • when p value is less than .05-sufficiently unlikely and we reject the null <td< td=""><td>4) make general conc</td><td>lusion</td><td></td><td></td><td></td></td<>	4) make general conc	lusion			
States that there is no difference betwin our statistic and what we would find by chanc .can compare sample to population (e.g. Hor M, = M.) .can compare two Samples (e.g. Hor M, = M.) why use null .carmot prove something to be true but can prove something to be faise likepretical .by starting will null, we can put together sampling distribution Statistical conclusion if data are very different from expected — reject Ho if data isn't different from expected — reject Ho if data isn't different from expected avertety (by factors why do we say "fail to reject? .hypothesis doesn't prove anything .failure to reject could be due to a variety (by factors when retaining null, you aren't actually saying two groups are equal Significance Level we set a limit on what values or sufficiently unlikely .this value is usually .os (pc.os) .ywhen p value is ess than .os-sufficiently unlikely and we reject the null .we want a p value less than .os- .indicates that difference is large and meaningful When p value is greater than .os-fikey retain the null hypothesis .indicates that difference is small/due to sampling error type one error: rejecting null when it is true .finding an effect when there isn't one type one error: rejecting null when it is true .finding an effect that is there .indicates that difference is that is there .indicates that of the relieft to reject the sampling error type one error: rejecting null when it is true .finding an effect that is there .indicates that of the receipter .iff p=a p=1-g .iff type one error p=1-g .iff t	States that there is no difference btwn our statistic and what we would find by chank . can compare two samples (£9, Hor A, = A.) . can compare two samples (£9, Hor A, = A.) why use null . cannot prove samething to be true, but can prove something to be false (theoretical . by starting wind), we can put together sampling distribution together the samples (£9, Hor A, = A.) why use null . cannot prove samething to be true, but can prove something to be false (theoretical . by starting wind), we can put together sampling distribution together the samples of the sampling (the sampling) is the sampling of the sampling is the samething to be false (theoretical . by starting wind), we can put together sampling (the sampling) . failure to reject: . hupothesis doesn't prove anything . failure to reject could be due to a variety 0; factors when retaining null, you aren't actually saying two groups are equal . sampling error . when pt to reject could be so sufficiently unlikely . this value is usually .05 (pt 05) . when pt 0.05, we have a less than 51 chance that the difference we see (s . sampling error . when p value is greater than .05 - sufficiently unlikely and we reject the null . we want a p value less than .05 - sufficiently unlikely and we reject the null . we want a p value less than .05 - sufficiently unlikely and we reject the null . when p value is greater than .05 - sufficiently unlikely and we reject the null . when p value is greater than .05 - sufficiently unlikely and we reject the null . when p value is greater than .05 - sufficiently unlikely and we reject the null . when a value is greater than .05 - sufficiently unlikely and we reject the null . indicates difference is manue to is true . finding an effect when its true . finding an effect the is there . reality . paint of the false (diff.) . for rect to prove correct powers . paint of p = 1 - 0, p = 0 . not finding t	Null hupothesis				
Can compare sample to population (e.g., Mo-M, = A.) • can compare two samples (e.g., Ho-M, = A.) • can compare two samples (e.g., Ho-M, = A.) why we null • carmot prove something to be true but can prove something to be faise likeoretical • by searcing wi null, we can put together sampling distribution Cathology with the early reject null hypothesis (retain) why do we say "fail to reject?" • hypothesis doesn't prove anything • failure to reject could be due to a variety of factors when retaining null, you aren't actually saying two groups are equal Significance Leftel we set a limit on what values or sufficiently unlikely • this value is usually .05 (p2.05) L when p 2.05, we have a less than 51 chance that the difference we see is sampling error when p value is less than .05 - sufficiently unlikely and we reject the null • we want a p value less than .05 • indicates that difference is large and meaningful where there is less that .05 - ikely retain the null hypothesis s • indicates that difference is sampling error type one error: rejecting null when it is true • finding an effect when there isn't one type true error: reject is a there reality cision Ho true nodiff) Ho faise (diff) lect isor rect type two error isor paid on error 	- Can compare sample to population (e.g., Ho-A, = A+) - can compare two samples (e.g., Ho-A, = A+2) why use null - Cannot prove something to be true but can prove something to be faise (theoretical - by starting winull, we can put together sampling distribution - Associal Conclusion if data are very different from expected →reject Ho if data isn't different from expected is variety 0b factors when retaining null, you aren't actually saying two groups are equal indicance totel we set a limit on what values or sufficiently unlikely -this value is usually .o5 (pc.o5) - when p value is usually .o5 (pc.o5) - when p value is less than .o5- sufficiently unlikely and we reject the null - we want a p value less than .o5- - indicates that difference is large and meaningful When p value is greater than .o5-likely retain the null hypothesi s - indicates difference is small/due to sampling error type one error: rejecting null when it is true - finding an effect when there isn't one type two error: failing to reject null when null is failse - not finding an effect when there isn't one type one error: failing to reject null when null is failse - not finding an effect when there isn't one type one error - p=1-β - a p=1-0 - a p=1	states that there is	no difference b	twn our stat	istic and what I	we would find by chance
· can compare two samples (£9, H ₀ - M ₂ =M ₂) why use null · cannot prove something to be true, but can prove something to be faise [theoretical by starting winull, we can put together sampling distribution Cannot prove something to be true, but can prove something to be faise [theoretical by starting winull, we can put together sampling distribution Cannot prove something to be true, but can prove something to be faise [theoretical by starting winull, we can put together sampling distribution Cannot to reject. if data are very different from expected =>reject Ho if data isn't different => Fail to reject? • hypothesis doesn't prove anything • failure to reject. could be due to a variety 0 factors when retaining null, you aren't actually saying two groups are equal Significance is level • when p 1.05, we have a less than 51 chance that the difference we see is sampling error when p Value is greater than .05 - sufficiently unlikely and we reject the null • we want a p value less than .05 - likely retain the null hypothesis; • indicates that a fifterence is large and meaningful when p Value is greater that .05 - likely retain the null hypothesis; • indicates that difference is small/due to sampling error type one error: failing to reject null when null is faise • not finding an effect that is there • ising </td <td>· can compare two Sample's (£9, Hg·M_=M_2) winy we null · cannot prove something to be true, but can prove Something to be faise (theoretical by starting winnul, we can put together sampling distribution Katistical Conclusion if data are very different from expected → reject Ho if data isn't different → fall to reject? · hypothesis doesn't prove anything · +Silure to reject; could be due to a variety 0b factors when retaining null, you aren't actually saying two groups are equal ignificance totel when p value is usually .05 (pc.05) · + when p value is usually .05 (pc.05) · + when p value is usually .05 (pc.05) · + when p value is usually .05 (pc.05) · + when p value is usually .05 (pc.05) · + when p value is usually .05 (pc.05) · + when p value is usually .05 (pc.05) · + when p value is usually .05 (pc.05) · + when p value is greater than .05 - sufficiently unlikely and we reject the null · + we want a p value less than .05 · indicates that difference is large and meaningful When p value is greater than .05 - sufficiently unlikely and we reject the null · + we want a p value less than .05 · indicates difference is large and meaningful When p value is greater than there isn't o</td> <td>·can compare sa</td> <td>mole to populat</td> <td>ian le.a. Ho-</td> <td>M.=M)</td> <td></td>	· can compare two Sample's (£9, Hg·M_=M_2) winy we null · cannot prove something to be true, but can prove Something to be faise (theoretical by starting winnul, we can put together sampling distribution Katistical Conclusion if data are very different from expected → reject Ho if data isn't different → fall to reject? · hypothesis doesn't prove anything · +Silure to reject; could be due to a variety 0b factors when retaining null, you aren't actually saying two groups are equal ignificance totel when p value is usually .05 (pc.05) · + when p value is usually .05 (pc.05) · + when p value is usually .05 (pc.05) · + when p value is usually .05 (pc.05) · + when p value is usually .05 (pc.05) · + when p value is usually .05 (pc.05) · + when p value is usually .05 (pc.05) · + when p value is usually .05 (pc.05) · + when p value is greater than .05 - sufficiently unlikely and we reject the null · + we want a p value less than .05 · indicates that difference is large and meaningful When p value is greater than .05 - sufficiently unlikely and we reject the null · + we want a p value less than .05 · indicates difference is large and meaningful When p value is greater than there isn't o	·can compare sa	mole to populat	ian le.a. Ho-	M.=M)	
why use null carmot prove something to be true, but can prove something to be false [theoretical buy starting WinWin, we can put together sampling distribution carmot prove something to be true, but can prove something to be false [theoretical buy starting WinWin, we can put together sampling distribution catastical conclusion if data isn't different from expected \rightarrow reject Ho if data isn't different from expected \rightarrow reject Ho if data isn't different from expected \rightarrow reject Ho if data isn't different from expected \rightarrow reject Null hypothesis (retain) why do we say "failto reject?" • hypothesis doesn't prove anything • failure to reject could be due to a variety 00 factors when retaining null, you aren't actually saying two groups are equal significance Level we sat a limit on what values or sufficiently unlikely • this value is usually .05 (p2.05) \rightarrow when p 2.05, we have a less than .05 - chance that the difference we see is sampling error when p value is gest than .05 - sufficiently unlikely and we reject the null • we want a p value less than .05 • indicates that difference is large and meaningful when p value is greater than .05 - likely retain the null hypothesis • indicates that difference is small/due to sampling error type one error: rejecting null when it is true • finding an effect when there isn't one type two error: failing to reject null when null is failse • not finding an effect that is there reality distor $p = a$ $p = 1 - \beta$ tain • $p = 1 - \alpha$ $p = \beta$ • $p = 1 - \alpha$ $p = \beta$	why use null ••••••••••••••••••••••••••••••••••••	· can compare t	wo samples Leo	$H_{0}-M_{-}=M_{2}$		
"Carmot prove something to be true, but can prove something to be false [theoretical out starting w/ null, we can put together sampling distribution "It data are very different from expected →reject Ho if data isn't different from expected →reject for factors why do we say "fail to reject?" "hypothesis doesn't prove anything 'failure to reject could be due to a variety 0% factors When retaining null, you aren't actually saying two groups are equal Significance tete! we set a limit on what values or sufficiently unlikely .this value is usually .o5 (p2.05) use with a p value less than .05 - sufficiently unlikely and we reject the null .we want a p value less than .05 - likely retain the null hypothesi s .indicates that difference is large and meaningful When p value is greater than .05 - likely retain the null hypothesi s .indicates difference is small/due to sampling error Mpe one error: rejecting null when it is true .finding an effect when there isn't one .indicates that is there	'Cannot prove something to be true, but can prove something to be false lineoretical by sarting w/ null, we can put together sampling distribution catabolical conclusion if data isn't different from expected →reject Ho if data isn't different from expected →reject for why do we say "fail to reject? hypothesis doesn't prove anything ·failure to reject could be due to a variety Op factors when retaining null, you aren't actually saying two groups are equal ignificance Lete! when p 2.05, we have a less than 51 chance that the difference we see is sampling error when p value is greater than .05 -sufficiently unlikely and we reject the null ·we want a p value less than .05 -likely retain the null hypothesis ·indicates that difference is large and meaningful when p value is greater than .05 -likely retain the null hypothesis ·indicates that difference is small/due to sampling error When p value is greater that is true ·finding an effect when there isn't one type two error: rejecting null when it is true ·finding an effect that is there reality type one error: reject that is there reality type one error: getwo error p=1 - β tain correct type two error p=1 - β tain · p=1 - 0 p=8 · not finding the difference is the difference · p=1 - 0 · p=6 · p=1 - 0 · p=8 · not finding the difference is the difference · p=1 - 0 · p=1 - 0 · p=6 · p=1 - 0 · p=6 · p=1 - 0 ·	why use null				
-by starting winning we right together sampling distribution -by starting winning we right to gether sampling distribution -associated conclusion if data are very different from expected →reject Ho if data isn't different → fall to reject? -hypothesis doesn't prove anything -failure to reject could be due to a variety (0) factors when retaining null, you aren't actually saying two groups are equal Significance Level we set a limit on what values or sufficiently unlikely -this value is usually -05 (pc.05) ↓ when pc.05, we have a less than 51- chance that the difference we see is sampling error when p value is usually -05 (pc.05) ↓ when p value is ess than .05- sufficiently unlikely and we reject the null -we want a p value less than .05- -indicates that difference is marge and meaningful when p value is greater than .05-likely retain the null hypothesis -indicates difference is small/due to sampling error type one error: rejecting null when it is true -finding an effect that is there reality cision Ho truetho diff) Ho faise(diff) ect type two error: failing to reject null when null is faise -not finding an effect that is there reality cision Ho truetho diff) Ho faise(diff) p=1-0, p=1-8 tain 	by sarking w/ null, we can put together sampling distribution be save used to a save together sampling distribution be save used to a save together from expected →reject Ho if data in the different from expected →reject Ho if data is the different from expected →reject Ho if data is the different from expected →reject Ho if data is the different from expected →reject Ho when retaining null, you aren't actually saying two groups are equal ignificance Level we set a limit on what values or sufficiently unlikely this value is usually io5 (p2.05) b when p 2.05, we have a less than 51 chance that the difference we see is sampling error when p Value is less than .05 - sufficiently unlikely and we reject the null we want a p value less than .05 indicates that difference is large and meaningful when p value is greater than .05 indicates difference is small/due to sampling error type one error: rejecting null when it is true finding an effect when there isn't one type two error: rejecting null when it is true isnon Ho true tho difference isn't one type one error correct (power) ff p = 1 - 0	Cappot prove	something to be	true but can	prove Somethin	a to be faise limenretical
teststical conclusion if data are very different from expected →reject Ho if data isn't different from expected →reject Ho if data isn't different from expected →reject Ho if data isn't different from expected →reject Ho hypothesis doesn't proce anything ·hypothesis value is usually .o5 (pc.o5) When p Value is less than .o5 -sufficiently unlikely and we reject the null ·wwwant a p value less than .o5 ·indicates that difference is large and meaningful When p Value is greater than .o5-likely retain the null hypothesis ·indicates difference is small/due to sampling error Hype one error: rejecting null when it is true ·inding an effect when there isn't one type one error: falling to reject null when null is false ·not finding an effect that is there reality cision Ho truelno diff) Ho false(diff) etism ff uppe one error correct(power) ff uppe two error p=1-β tain ·hot finding is rejection p=8	Heistical conclusion if data are very different from expected →reject Ho if data isn't different from expected →reject Ho hypothesis doesn't prove anything ·hypothesis	· hu starting w/r	WILL WE CAN OUT	toDother car	nning distribu	Kan
if Bata are very different from expected \rightarrow reject Ho if data isn't different \rightarrow fall to reject null hypothesis (retain) Why do we say "fail to reject? hypothesis doesn't prove anything failure to reject could be due to a variety 00 factors When retaining null, you aren't actually saying two groups are equal Significance Level we set a limit on what values or sufficiently unlikely this value is usually .05 (pc.05) \rightarrow when p 2.05, we have a less than 51 chance that the difference we see is sampling error When p Value is less than .05 -sufficiently unlikely and we reject the null .we want a p value less than .05 .indicates that difference is large and meaningful When p value is greater than .05-likely retain the null hypothesis .indicates difference is sampling error type one error: rejecting null when it is true finding an effect that is there reality cision Ho truelnodiffy Ho faise(diff) ect type one error ff p=1-B tain b type two error: p=1-B tain b type two error p=1-B tain b type two error p=1-B tain b type two error ff t	if data are very different from expected →reject Ho if data isn't different → fail to reject? ·hupothesis doesn't prove anything ·hupothesis that difference is large and meaningful When p value is greater than .05-sufficiently unlikely and we reject the null ·lupe und is greater than .05-sufficiently unlikely and we reject the null ·lupe one error: rejecting null when it is true ·indicates difference is small/due to sampling error lipe one error: rejecting null when it is true ·indicates difference is small/due to sampling error lipe the true no diff. Ho faise(diff) prove the error dorrect(power) ff prove the error prove dorrect(power) prove the prove doesn't prove the prove prove the prove prove prove prove the prove prove prove prove prove prove the prove prov	Statistical conclusion		LUJUITET 301		
<pre>In data are ving united to minicupation of the view of view of</pre>	indicates in 't different → fail to reject null hypothesis (retain) Why do We say "fail to reject? ·hypothesis doesn't prove anything ·failure to reject could be due to a variety 00 factors When retaining null, you aren't actually saying two groups are equal Significance Level we say submit of values or sufficiently unlikely ·this value is usually .o5 (p2.05) ↓ when p 2.05, we have a less than 51 chance that the difference we see is sampling error when p value is less than .05 -sufficiently unlikely and we reject the null ·we want a p value less than .05 -likely retain the null hypothesis ·indicates that difference is large and meaningful When p value is greater than .05 -likely retain the null hypothesis ·indicates difference is small/due to sampling error /ippe one error: rejecting null when it is true ·indicates that difference is small/due to sampling error /ippe two error: rejecting null when null is false ·not finding an effect when there isn't one type one error: rejecting null when null is false ·not finding an effect that is there reality /iff) /etain /iff) /iff) /iff) /iff)	is data are very di	No mont from av			
In dista isite unreference is small/due to sampling error when p value is used there is small/due to sampling error when retaining nully use or sufficiently unlikely this value is usually .05 (pc.05) is when p 2.05, we have a less than 51 chance that the difference we see is sampling error when p value is less than .05 - sufficiently unlikely and we reject the null we want a p value less than .05 indicates that difference is large and meaningful when p value is greater than .05-likely retain the null hypothesis indicates there is small/due to sampling error type one error: rejecting null when it is true indicates when there is mall one type one error is ling to reject null when null is faise not finding an effect when there is there reality tight type one error $p=a$ $p=1-\beta$ tain $p=1-\alpha$ $p=\beta$	Why do We say "fail to reject? • hypothesis doesn't prove anything • hypothesis doesn't prove anything • failure to reject? • when retaining null, you aren't actually saying two groups are equal significance tebel we set a limit on what values or sufficiently unlikely • this value is usually .o5 (pc.o5) □ when p 2.o5, we have a less than 51· chance that the difference we see is sampling error when p value is less than .o5 - sufficiently unlikely and we reject the null • when p value is less than .o5 - likely retain the null hypothesis; • indicates that difference is large and meaningful When p value is greater than .o5 - likely retain the null hypothesis; • indicates difference is small/due to sampling error Upe one error: rejecting null when it is true • finding an effect that is there • not finding an effect that is there reality type one error p:a we are exclosent the error iff p:a	if data isn't diame			r no athoric (retain)	
Window We say "valies reject: • hypothesis doesn't prove anything • failure to reject could be due to a variety 0j factors When retaining null, you aren't actually saying two groups are equal Significance Level we set a limit on what values or sufficiently unlikely • this value is usually .05 (p2.05) ↓ when p 2.05, we have a less than .05 - sufficiently unlikely and we reject the null • when p 2.05, we have a less than .05 • indicates that difference is large and meaningful When p value is greater than .05 - likely retain the null hypothesis • indicates difference is small/due to sampling error type one error: rejecting null when it is true • finding an effect when there isn't one type two error: failing to reject null when null is faise • not finding an effect that is there reality tissay type one error when p = 1- β tain • type one error or rect type twp error yno • finding an effect that is there p=a p=b	Windo Wee sage "raited reject: • hypothesis doesn't prove anything • failure to reject could be due to a variety 0b factors When retaining null, you aren't actually saying two groups are equal significance telle! we set a limit on what values or sufficiently unlikely • this value is usually .05 (pc.05) when p 2.05, we have a less than 51 chance that the difference we see is sampling error when p value is less than .05 - sufficiently unlikely and we reject the null we want a p value less than .05 - indicates that difference is large and meaningful when p value is greater than .05 -likely retain the null hypothesi s indicates difference is small/due to sampling error indicates difference is small/due to sampling error 			eject nun nyp		
$\begin{array}{c} \text{-injpotness} & \text{duesn't prove anything} \\ \text{-failure to reject could be due to a variety 0b factors} \\ \text{When retaining null, you aren't actually saying two groups are equal \\ \text{Significance Level} \\ \text{we set a limit on what values or sufficiently unlikely} \\ \text{-this value is usually .05 (pc.05)} \\ \text{-b when } pc.05, we have a less than 51 chance that the difference we see is sampling error \\ \text{When } p value is usually .05 (pc.05) \\ \text{-b when } p value is less than .05 - sufficiently unlikely and we reject the null \\ \text{-we want a } p value less than .05 - indicates that difference is large and meaningful \\ \text{When p value is greater than .05 - likely retain the null hypothesi s \\ -indicates difference is small/due to sampling error \\ \text{Upe one error: rejecting null when it is true \\ -finding an effect when there isn't one \\ type orne from the field that is there reality \\ reality \\ \text{cision Ho truelno diff) Ho faise(diff) \\ ect \\ bisay \\ ff \\ p=a \\ p=1-B \\ tain \\ correct \\ type twp error \\ p=a \\ p=1-B \\ tain \\ correct \\ type twp error \\ p=a \\ p=b \\ \end{array}$	- hypothesis doesn't prove anything -failure to reject could be due to a variety 0t factors when retaining null, you aren't actually saying two groups are equal significance tevel we set a limit on what values or sufficiently unlikely -this value is usually .05 (pc.05) -> when p 2.05, we have a less than 51 chance that the difference we see is sampling error when p value is less than .05 -sufficiently unlikely and we reject the null -we want a p value less than .05 - indicates that difference is large and meaningful when p value is greater than .05-likely retain the null hypothesis - indicates difference is small/due to sampling error Mpe one error: rejecting null when it is true - finding an effect when there isn't one type two error: rejecting null when null is false - not finding an effect that is there reality ff p=1-0 p=1-β tain - correct type two error p=1-0 p=1-8 - infield tho false deffer - not finding an effect that is there - p=8 - not finding an effect that is there - p=8 - not finding an effect that is there - p=1-8 - type two error correct(power) - p=1-8 - type two the state that is there - p=8 - not finding an effect that is the p-1 - p=8 - not finding an effect that a state - p=8 - not finding an effect that a state - p=8 - not finding an effect that a state - p=8 - not finding an effect that a state - p=8 - not finding a	why ab we say "t				
When retaining null, you aren't actually saying two groups are equal Significance Level we set a limit on what values or sufficiently unlikely • this value is usually .05 (p2.05) • when p2.05, we have a less than 51. chance that the difference we see is sampling error when p value is less than .05-sufficiently unlikely and we reject the null • when p value is less than .05-sufficiently unlikely and we reject the null • when p value is greater than .05-likely retain the null hypothesis • indicates difference is mall/due to sampling error When retaining an effect when there isn't one type one error: rejecting null when it is true • finding an effect that is there reality tailing to reject that is there reality type one error: railing to reject (power) p=a p=1-β tain	$\begin{array}{c} \label{eq: constraints} \\ \end{tabular} \\ \end{tabular}$		sn't prove any		D. Cocless	
When retaining null, you aren't actually saying two groups are equal Significance Level we set a limit on what values or sufficiently unlikely • this value is usually .05 (p2.05) • when p 2.05, we have a less than 51 chance that the difference we see is sampling error when p Value is less than .05 - sufficiently unlikely and we reject the null • when p Value is greater than .05 - indicates that difference is large and meaningful when p value is greater than .05 - likely retain the null hypothesis • indicates difference is small/due to sampling error type one error: rejecting null when it is true • finding an effect when there isn't one type two error: failing to reject null when null is faise • not finding an effect that is there reality tight type one error cision Ho true ino diff) Ho faise (diff) ect iff p=a p=1-β tain tain or rect type two error p=1-β tain tain tain tain tain	When retaining null, you aren't actually saying two groups are equal Significance Level we set a limit on what values or sufficiently unlikely • this value is usually .05 (p2.05) • when p2.05, we have a less than 51 chance that the difference we see is sampling error when p Value is less than .05 - sufficiently unlikely and we reject the null • when p value is less than .05 - likely retain the null hypothesis • indicates that difference is large and meaningful when p value is greater than .05 - likely retain the null hypothesis • indicates difference is small/due to sampling error type one error: rejecting null when it is true • finding an effect when there isn't one type two error: failing to reject null when null is failse • not finding an effect that is there reality tight two error (siston Ho true ino diff) Ho failse (diff) ett ett uppe one error correct type two error y no iff) p=4 p=1-8 too rect too rect too error y no p=1-8 too rect type two error y no		t conia de ave	to a variety		
we set a limit on what values or sufficiently unilkely • this value is usually .05 (p2.05) \rightarrow when p 2.05, we have a less than 51 chance that the difference we see is sampling error when p Value is less than .05 - sufficiently unlikely and we reject the null • we want a p value less than .05 • indicates that difference is large and meaningful when p value is greater than .05 - likely retain the null hypothesis • indicates difference is small/due to sampling error type one error: rejecting null when it is true • finding an effect when there isn't one type two error: failing to reject null when null is faise • not finding an effect that is there reality cision Ho truelno diff) Ho faise (diff) ject bisay ff tain Ny no liff) $p=a$ $p=a$ p=a	we set a limit on what values or sufficiently unikely • this value is usually .05 (p2.05) • when p 2.05, we have a less than 51 chance that the difference we see is sampling error when p value is less than .05 - sufficiently unlikely and we reject the null • we want a p value less than .05 - sufficiently unlikely and we reject the null • we want a p value less than .05 - sufficiently unlikely and we reject the null • indicates that difference is large and meaningful When p value is greater than .05 - likely retain the null hypothesis • indicates difference is small/due to sampling error type one error: rejecting null when it is true • finding an effect when there isn't one type two error: falling to reject null when null is false • not finding an effect that is there reality cision Ho truelno diff) Ho false (diff) (ff p=a p=1-β tain or rect type two error p=1-β tain or rect p=8 or rect p=8 or rect p=8	when retaining h	vii, you aren'e	actually so	ying two group	s are equal
We set a limit on what values or sufficiently unlikely • this value is usually .05 (pc.05) • when p 2.05, we have a less than 51 chance that the difference we see is sampling error when p value is less than .05 - sufficiently unlikely and we reject the null • we want a p value less than .05 • indicates that difference is large and meaningful when p value is greater than .05-likely retain the null hypothesis • indicates difference is small/due to sampling error fupe one error: rejecting null when it is true • finding an effect when there isn't one type one error: falling to reject null when null is false • not finding an effect that is there reality cision Ho truelnodiff) Ho false (diff) ject bisay ff tain p = 1 - Q p = B • not find on the error y no liff) p = 1 - Q p = B	We set a limit on what values or sufficiently unlikely this value is usually .05 (p2.05) \rightarrow when p2.05, we have a less than 51 chance that the difference we see is sampling error when p Value is less than .05 - sufficiently unlikely and we reject the null .we want a p value less than .05 indicates that difference is large and meaningful when p value is greater than .05-likely retain the null hypothesis .indicates difference is small/due to sampling error type one error: rejecting null when it is true .finding an effect when there isn't one type two error: falling to reject null when null is false .not finding an effect that is there reality cision Ho truelno diff) Ho false (diff) pech lissy ff tain Determine type two error p=1-p p=1-p p=1-p p=1-q p=8	significance level				
 this Value is Usually .05 (p2.05) when p 2.05, we have a less than 51. chance that the difference we see is sampling error when p Value is less than .05 - sufficiently unlikely and we reject the null 	 this value is usually .05 (p2.05) when p 2.05, we have a less than 51 chance that the difference we see is sampling error when p value is less than .05 - sufficiently unlikely and we reject the null .we want a p value less than .05 .indicates that difference is large and meaningful when p value is greater than .05-likely retain the null hypothesis .indicates difference is small/due to sampling error type one error: rejecting null when it is true .finding an effect when there isn't one type two error: falling to reject null when null is false .not finding an effect that is there reality type one error correct type two error p=1-β tain p=1-a p=8 	we set a limit on u	unat values or	sufficiently	Unlikely	
$ \begin{array}{c} \label{eq:sampling} \begin{tabular}{lllllllllllllllllllllllllllllllllll$	Sompling promotion Sompling error When p Value is less than .05 - sufficiently Unlikely and we reject the null we want a p value less than .05 indicates that difference is large and meaningful When p Value is greater than .05-likely retain the null hypothesis indicates difference is small/due to sampling error type one error: rejecting null when it is true indicates difference is small/due to sampling error type one error: rejecting null when it is true indicates difference is small/due to sampling error type two error: failing to reject null when null is false not finding an effect when there isn't one type two error reality cision Ho truelno diff) Ho false(diff) fct p=a p=1-β tain tain p=a p=b	·this value is u	20311 ·05 (p2.0)5)		
sampling error when p value is less than .05-sufficiently unlikely and we reject the null . we want a p value less than .05 . indicates that difference is large and meaningful when p value is greater than .05-likely retain the null hypothesis . indicates difference is small/due to sampling error type one error: rejecting null when it is true . finding an effect when there isn't one type two error: failing to reject null when null is false . not finding an effect that is there reality type one error correct(power) ff $p=a$ $p=1-\beta$ tain correct type two error hy no liff) $p=1-a$ $p=\beta$	Sampling error when p Value is less than .05 - sufficiently unlikely and we reject the null .we want a p value less than .05 .indicates that difference is large and meaningful when p Value Is greater than .05 - likely retain the null hypothesis .indicates difference is small/due to sampling error type one error: rejecting null when it is true .finding an effect when there isn't one type two error: failing to reject null when null is false .not finding an effect that is there reality cision Ho truelno diff) Ho false (diff) pect bisay ff p=a p=1-B tain correct type two error fy no liff) p=1-a p=B Dne Tailed t Two Tailed tests	when p2.05,	me have a less	than 51. chi	ance that the o	difference we see is
When p Value is less than .05 - sufficiently unlikely and we reject the null .we want a p value less than .05 . indicates that difference is large and meaningful When p value is greater than .05-likely retain the null hypothesis . indicates difference is small/due to sampling error Kype one error: rejecting null when it is true . finding an effect when there isn't one type two error: failing to reject null when null is faise . not finding an effect that is there reality cision Ho true ino diff) Ho faise (diff) ject bisay type one error correct(power) ff $p=a$ $p=1-\beta$ tain $p=1-a$ $p=\beta$	When p Value is less than .05-sufficiently unlikely and we reject the null . We want a p value less than .05 . indicates that difference is large and meaningful When p Value is greater than .05-likely retain the null hypothesis . indicates difference is small/due to sampling error type one error: rejecting null when it is true . finding an effect when there isn't one type two error: failing to reject null when null is false . not finding an effect that is there reality cision Ho truelno diff) Ho false (diff) pect bisay ff $p=a$ $p=1-\beta$ tain correct type two error Ny no liff) $p=1-a$ $p=\beta$) netailed (two failed tests	sampling err	'or			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$. We want a p value less than .05 . indicates that difference is large and meaningful When p value is greater than .05-likely retain the null hypothesis . indicates difference is small/due to sampling error type one error: rejecting null when it is true . finding an effect when there isn't one type two error: failing to reject null when null is false . not finding an effect that is there reality cision Ho truelno diff) Ho false (diff) pect bisay type one error correct(power) ff $p=a$ $p=1-\beta$ tain correct type two error iff) $p=1-a$ $p=B$ Diff) $p=1-a$ $p=B$. not finding the tailed tests	when p value is le	255 than .05-5	ufficiently un	likely and we r	eject the nuil
· indicates that difference is large and meaningful When p value is greater than .05-likely retain the null hypothesis ·indicates difference is small/due to sampling error type one error: rejecting null when it is true ·finding an effect when there isn't one type two error: falling to reject null when null is false ·not finding an effect that is there reality cision Ho truelno diff) Ho false (diff) ject blsay ff $p=a$ $p=i-\beta$ tain p=1-a $p=\beta$	· indicates that difference is large and meaningful When p value is greater than .05-likely retain the null hypothesis · indicates difference is small/due to sampling error iupe one error: rejecting null when it is true · finding an effect when there isn't one type two error: failing to reject null when null is false · not finding an effect that is there reality cision Ho truelno diff) Ho false (diff) ject bisay type one error correct(power) ff p=a p=1-B tain correct type two error p=1-a p=8) ne Tailed & Two Tailed tests	· we want a p v	value less than	.05		
When p value is greater than $\cdot 05 - likely$ retain the null hypothesis indicates difference is small/due to sampling error type one error: rejecting null when it is true finding an effect when there isn't one type two error: failing to reject null when null is false not finding an effect that is there reality cision Ho truelno diff) Ho false (diff) ject bisay ff p=a $p=1-\beta$ tain correct type two error p=1-a $p=\beta$	When p value is greater than .05-likely retain the null hypothesis indicates difference is small/due to sampling error type one error: rejecting null when it is true finding an effect when there isn't one type two error: falling to reject null when null is false not finding an effect that is there reality cision Ho truelno diff) Ho false (diff) ject blsay ff tain correct type two error p=1-B tain p=1-a, p=B)ne tailed (Two Tailed tests	·indicates that	difference is la	arge and mea	ningful	
$\begin{array}{c c} \cdot inclicates & difference is small/due to sampling error \\ \hline inclicates & difference is small/due to sampling error \\ \hline inclicates & difference is small/due to sampling error \\ \hline inclicates & difference is small/due to sampling error \\ \hline inclicates & difference is small/due to sampling error \\ \hline inclicates & difference is small/due to sampling error \\ \hline inclicates & difference is small/due to sampling error \\ \hline inclicates & difference is small/due to sampling error \\ \hline inclicates & difference is small/due to sampling error \\ \hline inclicates & difference is small/due to sampling error \\ \hline inclicates & difference is small/due to sampling error \\ \hline inclicates & difference is mall/due to sampling error \\ \hline inclicates & difference is mall/due to sampling error \\ \hline inclicates & difference is mall/due to sampling error \\ \hline inclicates & difference is mall/due to sampling error \\ \hline inclicates & difference is mall/due to sampling error \\ \hline inclicates & difference is mall/due to sampling error \\ \hline inclicates & difference is mall/due to sampling error \\ \hline inclicates & difference is mall/due to sampling error \\ \hline inclicates & difference is mall/due to sampling error \\ \hline inclicates & difference is mall/due to sampling error \\ \hline inclicates & difference is mallower \\ \hline inclicates & difference is difference is mallower \\ \hline inclicates & difference is difference $	-indicates difference is small/due to sampling error type one error: rejecting null when it is true -finding an effect when there isn't one type two error: failing to reject null when null is false -not finding an effect that is there reality cision Ho truelno diff) Ho false (diff) ject bisay ff $p=a$ $p=1-\beta$ tain - correct type two error y no $p=1-a$ $p=\beta$ - ne tailed & Two Tailed tests	when p value is gr	eater than .05-	likely retain	the null hypoth	nesi s
Type one error rejecting null when it is true • finding an effect when there isn't one type two error: failing to reject null when null is failse • not finding an effect that is there reality cision Ho truelno diff) Ho failse (diff) bisay type one error correct type two error p=1- β tain p=1- β	Type one error ror type one error: rejecting null when it is true finding an effect when there isn't one type two error: failing to reject null when null is false onot finding an effect that is there reality cision Ho truelno diff) Ho false (diff) ject blsay type one error correct type two error p=1- β tain correct type two error p=1- β tain p=1- β tain correct type two error p=8	·indicates differ	ence is small/a	due to sampl	ing error	
type one error: rejecting null when it is true finding an effect when there isn't one type two error: failing to reject null when null is false not finding an effect that is there reality cision Ho truelno diff) Ho false (diff) ject olsay type one error correct(power) ff $p=a$ $p=1-\beta$ tain correct type two error liff) $p=1-a$ $p=\beta$	type one error: rejecting null when it is true ·finding an effect when there isn't one type two error: failing to reject null when null is false ·not finding an effect that is there reality cision Ho truelnodiff) Ho false (diff) ject blsay type one error correct(power) ff p=a p=1-β tain correct type two error jp = 1-a p= β)ne Tailed & Two Tailed tests	Type one/two error				
$\begin{array}{c} \begin{array}{c} \label{eq:constraint} \cdot \end{tabular} & tabua$	• finding an effect when there isn't one type two error: failing to reject null when null is false • not finding an effect that is there reality cision Ho true lno diff) Ho false (diff) ject blsay type one error correct type two error p=1-β tain correct type two error liff) p=1-β)ne Tailed & Two Tailed tests	type one error: rej	ecting null wh	en it is true		
type two error: falling to reject null when null is false not finding an effect that is there reality cision Ho truelno diff) Ho false (diff) ject olsay ff p=a $p=1-\beta$ tain correct type two error liff) $p=1-a$ $p=\beta$	type two error: failing to reject number nu	finding an effe	et when ther	e isn't one		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	tune two error: fail	ling to reject r	nullwhen nul	l is false	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} reality\\ reality\\ reality\\ Ho false (diff)\\ pect\\ blsay\\ type one error \\ p=a \\ p=1-\beta\\ taln\\ correct \\ type two error\\ p=b \\ \hline \end{array}$	· not finding an	effect that is	there		
cision Ho truelno diff) Ho false (diff) ject olsay type one error correct(power) ff p=a p=1- β tain correct type two error $p=1-a$ p= β	cision Ho truelno diff) Ho false (diff) lect blsay type one error ff p=a p=i-B tain correct type two error p=l-a p=B)ne Tailed & Two Tailed Lests	re	ality			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	isolar type one error correct(power) ff p=a p=1-β tain correct type two error igf) p=1-a p=8 one Tailed & Two Tailed Lests correct tailed Lests	cision Ho truelno	diff) Ho false	ldiff)		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	bisay type one error correct(power) ff p=a p=1-B tain correct type two error igno p=1-B	ject				
ff $p=a$ $p=l-\beta$ tain correct type two error liff) $p=l-a$ $p=\beta$	ff p=a p=l-β tain correct type two error iy no iiif) p=l-a p=l-a p=β	bisay type one er	ror orrec	t (power)		
tain correct type two error hyno hff) p=1-a p=B	tain y no liff) p=l-a. p=B DneTailed & Two Tailed Lests	ff p=a	0=1-	B		
b by no liff) $\rho = 1 - 0$, $\rho = \beta$	Correct type two error iu no p= B iff) p= B in e Tailed & Two Tailed tests					
$\begin{array}{c c} correct \\ iype two error \\ here \\ h$	igno h(f) p=l-a p=β)neTailed t Two Tailed tests					
	liff) ρ=1-α ρ=β)neTailed & Two Tailed tests	auno	typetw	o error		
	In e Tailed & Two Tailed Lests	HIGE) P=1-Q	0=B			
	DneTailed & Two Tailed Lests					

-one tailed (directional) test: decide that scores are in the top 5% for bottom 313 are very unlikely -> greater than/less than symbol) -two-tailed (undirectional test): decide that scores at either extreme are unlikely -decide which test before testing

-determine power a priori